
AD-AllO 948 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR INFORMA--ETC F/B 12/1
A RELIABLE BROADCAST ALGORITHMU)
JAN 82 A SEGALL. B AWERBUCH N00014-75-C-1183

UNCLASSIFIED LIDS-P-i77 NLE 'IIEEEIIIIIE

SICCuftITY CLASSIFICATION Of THIS PAGE (W"Abt DO!Lnt sed)LREPORT1 DOUETTOFAERAEA fMUCTIONS
REPOT DCUMETA~ION AGEBEFORE COMPLETING FORM

1REP')AT NU-MBER 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

' -E .nd Sti ' -. 1 5 . T'rF OF NtEPCRZ * OEUWCO C

A Reliable Broadcast Algorithm Paper

, PECIF;'.--1 C'*G. AEP 7 'J- E

Adrian Segall and Baruch Awerbuch ARPA ORDER No. 3045/5-75
ONR/N00014-75-C-1183

FIQMT-4 OHNG..Z.- . NAME AN: ADDRESS io.Po '-:Am. ~O
14.. IT A' Z O -- j 00 NOT N)..rSERS

Laboratory for Information and Decision Systems Program Code No. 5T10

E4 Cambridge, MA 02139 ONR Identifying No. .049-383
1.CNTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency a ry18
1400 Wilson Boulevard I13. NUMBER OF PAGES

Arlington, Virginia 22209 21 n~acels
14. MONITORING AGENCY NAME A AODRESS4'l different from Controlling Office) IS. SECURITY CLASS. (of tis report)

of fice of naval Research Ucasfe
Information Systems Program Ucasfe
code 437 15. DECLASSIFICATION DOv I.IRADiNG

Arlington, Virginia 22217 SCHEDULE

16m DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract etfed In Block 20, 11' different from Report)

1S. SUPPLEMENTARY NOTES

This paper has been submitted to the IEEE Transactions on Communications.

19. KEY WORDS (Continue ont,*voe* slde If necessawy, and identify by block number)

0

20. ABSTRACT (Continue an revese. side If necessary and identify by block number)

Broadcast in a communication network is the delivery of copies of messages
to all nodes. A broadcast algorithm is reliable if all messages reach all
nodes in finite time, in the correct order and with no duplicates. The present
paper presents an efficient reliable broadcast algorithm.

OD "" 1473 EDTO, I7 Nov 63 Is OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE ften Daes Enterett)

.. . ..-

January 1982 LIDS-P-1177

A Reliable Broadcast Algorithm

Adrian Segall and Baruch Awerbuch

Department of Electrical Engineering
Technion - Israel Institute of TechnologyHaifa, Israel

ABSTRACT

"Broadcast in a communication network is the delivery of copies of

messages to all nodes. A broadcast algorithm is reliable if all messages

reach all nodes in finite time, in the correct order and with no duplicates.

The present paper presents an efficient reliable broadcast algorithm.,

Accession ForAccession tNTIS c£($i

Z"_* Th.GS

-l/or

The work of A. Segall was performed on a consulting agreement with the
Laboratory for Information and Decision Systems at MIT, Cambridge, Mass.,
and was supported in part by the Office of Naval Research
No. ONR/NO0014-77-C-0532 and in part by the Advanced Research Project
Agency of the US Department of Defense (monitored by ONR) under Contract
No. N00014-75-C-1183.

This paper has been submitted to the IEEE Transactions on Communications.

lC

1. INTRODUCTION

Broadcast multipoint communication is the delivery of copies of a

message to all nodes in a communication network. In a network with mobile

subscribers, for example, the location and connectivity to the network of

such subscribers may change frequently and this information must be broad-

cast to all nodes in the network, so that the corresponding directory

list entry can be updated. Broadcast messages are used in many other

situations, like locating subscribers or services whose current location

is unknown (possibly because of security reasons), updating distributed

data bases or transmitting informtion and commands to all users connected

to the communication network.

There are certain basic properties that a good broadcast algorithm

must have and the most important are: a) reliability, b) low communication

cost, c) low delay, d) low memory requirements. Reliability means that

every message must indeed reach each node, duplicates, if they arrive at a

node, should be recognizable and only one copy accepted, and messages should

arrive in the same order as transmitted. Communication cost is the amount

of communication necessary to achieve the broadcast and consists of, first.

the number of messages carried by the network per broadcast message, (broad-

cast commicatlon cost), second, the number of control messages necessary

to establish the broadcast paths, (control communication cost), and, third,

the overhead carried by each message (overhead cost). Low delay and m

are basic requirements for any comunication algorithm, and broadcasts are

no exception.

t1

-2-

The broadcast communication cost is minimized if the algorithm uses

spanning trees, but normally tnere is need for a large control commuication

cost in order to establish and maintain these trees. However, the control

cost can be reduced considerably provided that the routing mechanism in

the network constructs routing paths that form directed trees towards

each destination, in which case these trees can be used in the reverse

direction for broadcast purposes. This general idea is presented in [1],

but the authors show that the proposed algorithms named reverse Dath

forwarding and extended reverse path forwarding are not reliable when the

routing algorithm is dynamic, since in this case nodes may never receive

certain messages, duplicates may be received and accepted at nodes, and the

order of arriving messages may not be preserved. As said before, in order

to be efficient, the above mentioned algorithms require that the routing

paths to each destination are directed trees. An adaptive routing algorithm

that maintains at all times spanning directed trees rooted at the destina-

tion has been proposed in (2) and throughout the present paper we assume

that the protocol of (2) is the underlying routing algorithm in the network.

However, for the reasons stated before, namely the fact that the routing

paths are dynamic, the broadcast algorithm of (1] is unreliable even if

applied to the routing procedure of [2).

The purpose of the present paper is to propose and validate an

algorithm whose main property is that the broadcast propagating on the

tree provided by the routing protocol of [2] is reliable. It is convenient

for the purpose of our discussion to separate the property of reliability

into two parts: completeness means that each node accepts broadcast

messages in the order released by their origin node, without duplicates

or messages missing, while finiteness is the property that each broadcast

message is indeed accepted at each node in finite time after its release.

-3-

As mentioned and exemplified by the authors, the algorithms of (1] are

neither complete nor finite. In the algorithm of the present paper,

completeness is achieved by requiring nodes to store broadcast messages

in the memory for a given period of time and by introducing counter numbers

at the nodes. Finiteness is obtained by attaching a certain impeding

mechanism to the routing protocol. We may mention here that it is relativ-

ely easy to make a broadcast algorithm reliable if one allows infinite

memory, unbounded counter numbers and infinite overhead in the broadcast

messages. However, the properties that make our algorithm tractable are:

bounded memory, bounded counter numbers, no overhead carried by broadcast

messages (in form of counter numbers or any other kind) and the fact that

the impeding mechanism is not activated most of the time.

In the rest of the paper we proceed as follows: Sec. 2.1 contains

a brief description of the routing algorithm of (2]. Sec. 2.2 and 2.3

build the reliable broadcast protocol step by step, while its final form

and main properties are given in Sec. 3. The proofs of the main theorems

are included in the Appendix.

-4-

2. THE BROADCAST PROTOCOL

2.1 The Routing Protocol

The underlying routing protocol considered in this paper is

The Basic Protool of (2]. In summary, this protocol proceeds in updating

cycles triggered and terminating at the destination node named SINK.

An updating cycle consists of two phases: a) control messages propagate

uptree from SINK to the leaves of the current tree and each node i per-

forms this phase whenever it receives a control message MSG from its

current preferred neighbor pi; b) control messages propagate downtree,

while new preferred neighbors are selected and this phase is performed at

node i upon detecting receipt of MSG from all neighbors.

In the following sections we shall need to identify the updating

cycles and it is convenient to attach to each cycle a counter number a.

For the time being a will be unbounded, but later we shall show that

a binary variable is sufficient. The routing protocol is specified by

the following algorithm.

Routing Algorithm for node I (RA)

1. For MSG (L,a)

2. Ni(t) 1

3. if t -pi, then: a ; send MSG(ai) to all t E G, except p1

4. if vL' e G1 , holds N1t')-l, then: send MSG(a1) to Pi; select

new pi; v' E G,, set Nt(t') O.

Here Gi denotes the set of neighbors of i and "For MSG (t,a)"meang' when

receiving MSG(*) from neighbor t, perform.....". Subscript i indicates

variables at node i and corresponding variables without subscript indicate

variables in the received message. We have deliberately suppressed from

the algorithm of [2] all variables that are not directly relevant to the

.... -- " - li ---" i .. .~.. [. i

-5-

broadcast (like dt , d, 01(t)) and have not explicitly indicated the proce-

dure for selecting the new pi because it is not important for our purpose,

except for the property that it maintains at all times a directed spanning

tree rooted at SINK. For simplicity pi will be called the father of i.

The algorithm is indicated for a given SINK that is not specified explicitly

(again for simplicity of notation) and that becomes the source of the broad-

cast messages. The SINK performs the following algorithm (lines are num-

bered to match equivalent instructions in the Routing Algorithm):

3. Start new cycle by aSINK - SINK+I, send MSG(aSINK) to all t E GSINK.

(Note: < 3 > can be performed only after < 4 > of the previous

cycle has been performed).

1. For MSG(W)

2. NSINK(e) ,-

4. if Vt' E GSIHK, holds NSIV(t')-I, then cycle a completed,

Vt' ' GSINK, set NSINK(L')-O.

In principle, the routing tree can be used for broadcast purposes

as follows: a node i accepts only broadcast messages received from its

father p1 and forwards them to all nodes k whose father is i. Observe

that we distinguish between receiving a broadcast message and accepting it.

In general, a broadcast message received at a node may be either accepted

or rejected, depending on the specific algorithm.

The first problem that one encounters with the above procedure is

that in the routing algorithm a node i knows only its father pi, but

does not know the nodes k for which Pk-t. Consequently, we need an

addition to the routing algorithm, so that whenever a node i changes its

father Pi, (line < 4 i in the Routing Algorithm) it sends two special

messages: DCL (declare) to the new father and CNCL (cancel) to the old father.

A specific line in an algorithm will be indicated in angular brackets < >.
The algorithm we refer to will either be clear from the context or indicated

explicitly.

i . .__ _ :. , :.: :_. --- -; ,.. ,, - , . ._.' ,'

-6-

Each node i will have a binary variable zi(k) for each neighbor k

that will take on th ,alue 1 if i thinks that Pk-i and 0 otherwise.

Receipt of OCL at node k from i shows that at the titme DCL was sent,

node i selected k as p,, so that Zk(i) is set to 1. The nodes i

for which zk(i)-I are called sons of k. Observe that because of link

delays, if i is a son of k it does not mean that at the same time k

Is the father of i. We can now write in our notation the combination

of the above routing algorithm and the Extended Reverse Path Forwarding

(ERPF) Broadcast Algorithm of [1J, where B denotes a broadcast message:

ERPF Broadcast

1. For MSG (t,i)

2. Ni *() 1

3. if tu P. then: ai -, send MSG to all i e Gi, except pi

4. if VV E G,, holds Ni(L')=l, then:

4.a. select new Pt;

4.b. if new pi f old pi, then send DCL(a) to new p1 and CNCL

to old pi;

4.c. send MSG(a) to old pi; Vt' C Gt, set Nt(L') - 0.

5. For CNCL(L) set zt(L) - 0.

6. For DCL(t,a), set zi(t) * 1

7. For B(L)

8. if t a pi, then accept B, send copy of B to all t's.t. ztiz,)=l

Note: It is worth pointing out that line < 8 > means that if t pi,

then B is accepted, while if t pi, then it is rejected.

IF

7-

2.2 Comoleteness

As mentioned in the introduction, the above broadcast protocol

is noncomplete and nonfinite. The purpose of this section is to show that

completeness can be achieved by using memory and counter numbers at the

nodes. Observe that we achieve our goal without requiring that the counter

numbers will be carried by the broadcast messages, so that the algorithm

has no overhead cost. For purposes of illustration, it is best to impose

for the time being no bounds on the memory or on the counters and also to

describe the protocol as if completeness was already proved. After indica-

ting the formal algorithm we shall show that it is indeed complete and in

the following sections we shall introduce features that will make the

memory and the counters finite.

Suppose we require each node I to have a LIST I where every accepted

broadcast message is stored in the received order and also to keep a counter

ICi, counting the accepted messages. Completeness of the broadcast protocol

means that for any value of ICI, the list LIST i contains all messages sent

by the source SINK up to counter number ICi, with no duplicates and in the

correct order. In other words if ICB denotes the value of ICi after broad-

cast message B was accepted at node i, we have IC = ICB for all B and all i.
I SINK

In the algorithm we also require that every DCL message sent by node k will

have the format DCL(a,IC) where IC a ICk at the time DCL is sent. In this

way when a node i receives DCL from k, it will have updated information

about the "state of knowledge", denoted by ICi(k), of its new son k. Only

broadcast messages B with ICB > ICi(k) need to be sent by i to k.

The formal algorithm is now

-8-

The Complete Routing - Broadcast Algorithm (CRB) for node i

1. For MSG(.t,a)

2. Ni(-) 1 1

3. if =pi , then : a i - a; send MSG(ai) to all L'eGi except pi

4. if V1'cG i , holds Ni(L') - 1, then:

4a. select new pi

4b. if new pi # old pi, then send DCL(ai,ICi) to new pi and

CNCL to old pi

4c. send MSG(ai) to old pi ; VL'cGi, set N(L') - 0

5. For CNCL(t), set zi) 0

6. For OCL(1,a,IC) set zi(t) * 1

6a. if IC < ICi , then send to . contents of LIST i from IC+l to ICi

while incrementing ICi(W) up to IC1

6b. else ICiW() - IC

7. For B(z)

7a. if z=pi, then ICi . ICI + 1, include B in LIST I,

7b. VjcGi s.t. zi(j)=l, ICi(J) c IC,, then

7c. send B to J, ICi(J) - ICi(j) + 1

Our basic assumption is that all messages sent on a link arrive in

arbitrary but finite time after their transmission, with no errors and in the

correct order (FIFO). Observe that this does not preclude channel errors

provided there is an acknowledgement and retransmission protocol on the link.

The proof that under this condition the CRB protocol is indeed complete

appears in Appendix A. Here we only mention that the important property

leading to completeness is the statement of Lemma Al, that will be called the

session property. Broadcast protocols associated with other routing algorithms

can be made to have this property, but several additions to the algorithm are

necessary. It is a special feature of the routing protocol of [2] that the

- ,. -.

-

session condition holds with no extrainstructions. Also observe that as will

be seen in Lemma A2 and Theorem Al, completeness is achieved without requiring

messages to carry their counter number.

2.3 Finiteness

Completeness means that broadcast messages are accepted at nodes in

the correct order and with no duplicates or messages missing. However, it does

not ensure that all messages are indeed accepted at all nodes. The following

scenario shows that, since we allow arbitrary propagation time for messages

on each link, there may be a situation in the CRB algorithm where a node i

accepts no messages from a certain time on. Considering Fig. 1, recall that

tD is the time when <4> of cycle a is executed at node i, but observe

that MSG(m) was sent from i to j when i executed <3>. Therefore MSG(M) may have

arrived to j well before TD and if the propagation time of DCL(a,IC) is long

enough, j may have completed cycle a and entered cycle (a+l) before time TD"

When it entered cycle (a+l), node j has sent MSG(a+l) to i, so that node i

could have performed <3> and <4> of cycle (a+l) before time t. Now if this

happens and at the time of performing <4> of cycle (a+l) node i changes its pi,

then pi [t] $ j and B is not accepted. In principle, this scenario can be

repeated indefinitely, so that B and the broadcast messages following it

keep arriving at node i, but will never be accepted.

In order to correct the situation and achieve finiteness, we introduce

an "Impeding Mechanism" in the CRB algorithm. Control messages MSG(a) sent from

j to i will carry in addition a variable z = z.(i), and MSG(a,z) such that

aoi+l, z=O received from J=pi will be ignored. Moreover, if node j receives

DCL(a,IC) with a<aj (and then by Lemma A3 we have a=a-l) node j transmits

again MSG(mj,z) with zzl. In this way, node i postpones execution of <3>

until it receives acknowledgement from j=pi (in the form of MSG(aj, z=l)), that

the last DCL message has been received at J.

-10-

For each broadcast message accepted at a node i, it is convenient at

this point to indicate explicitly the cycle during which it was accepted. To

do so we replace LIST i by a set of buffers LISTi(a), c=1,2,.... (for the

meantime an infinite number of unbounded buffers) and all broadcast messages

accepted while i was in cycle a are stored in LISTi(a). Also, counters

Ci(a) are used, counting messabes accepted during cycle a. Out of the messages

corresponding to cycle a, those that have been accepted at neighbor i as far

as i knows are counted in Ci(z)(a). Consequently, the counter IC is redefined

as the pair IC = (a,C(a)), where IC' < IC" means that either a' < a" or

' a" and C'(a') < C" ').

The resulting algorithm is given below and the proof that it is complete

and finite appears in the Appendix.

The Reliable Routing-Broadcast Algorithm (RRB) for node i

1. For MSG(taz)

2. if itPi, then Ni(z) +- 1

3. if z=pi and z=l, then : Ni(.)l, yii+1, send MSG(ai,zi(z)) to all

z' Gi except pi

4. if V'FGi., holds Ni(V') = 1, then:

4a. select new pi

4b. if new pi # old pi, then send DCL(a i Ci (ai) to new pi and

CNCL to old pi

4c. send MSG(ai) to old pi ; VW'eGi, set Ni(t') - 0

5. For CNCL(s), set zi(t) - 0

6. For DCL(,,C), set zi(z) - I

6a. if C<Ci(a), then send to t contents of LIST,(() from C to Ci(a) while

incrementing Ci()(G) to Ci(M)

6b. if a= 1-l, then send MSG(ai , zi(t)) to L

send to z contents of LISTi(a i) from 1 to Ci(a i) while

incrementing Ci()(Wai) to Ci(a i)

6c. else, if C Ci(a), then Ci(e)(a) 4-C

A,

' - 11 -

7. For B()

7a. if x=p i , then Ci(a i) - Ci(a i) +1, include B in LISTi(i),

7b. VjcG i, s.t. zi(j)=1, Ci(ai)(j) < Ci(ai), then

7c. send B to j, C i (ai)(j) - Ci(ai)(j) + 1

Before proceeding, we note here that the Impeding Mechanism slows

down the routing algorithm, ut only in extreme situations. This is

because the Impeding Mechanism is in fact activated only in the case when

DCL(a,C) sent by a node i to j arrives there after node j has performed <3>

of cycle (a+l). Since such a DCL message is sent by i when it performs <4>

of cycle a , this means that propagation of DCL on link (ij) takes more

time than propagation of the routing cycle a from i all the way to SINK

plus propagation of cycle (a+l) all the way from SINK to node j. This may

indeed haPpen if we allow arbitrary delays on links, but the chances are

small.

- 12 -

3. THE RELIABLE BROADCAST PROTOCOL

The final form of the broadcast protocol will be obtained from the

RRB algorithm after making several observations.

a) The broadcast messages accepted by node i while it is in cycle a

are exactly those broadcast messages released by SINK while it is in

cycle a (follows from Corollary Al).

b) If node i is in cycle a , it will never be required to send to

neighbors messages accepted prior to cycle (a-l) and therefore it needs

to store only messages accepted during the present and the previous cycles.

From a) and b) follows that we can make significant simplifications

in RRB. The variables aai can be binary; only two lists LISTi(O) and LISTi(l)

need to be stored; if SINK is allowed to send no more than M broadcast

messages per cycle, those LIST's can have finite size M; only counters Ci(O),

Ci(z)(O), Ci(l), Ci(t)(1) are needed and all those are bounded by M; control

messages MSG need not carry the variable a. The resulting broadcast algorithm

has the followinq properties:

Properties of RRB (network has N nodes and E link)

1) Reliability

2) Finite memory and counters

3) No overhead cost

4) Control communication cost: the routing protocol reouires 2E messaqes

MSG per cycle whether broadcast is operatinq in the network or not.

Broadcast requires no new MSG messaqes, except in the peculiar situation

described at the end of Section 2.3. Ir addition we need at most N DCL

messages and N CNCL messages per cycle.

5) Broadcast communication cost: most of the time broadcast messages

propagate on spanning trees. The only situation when two copies of the

same message arrive at a node (and one is ignored) is when a broadcast

message "crosses paths" with a CNCL message. This means that CNCL is

-13-

sent by I to j and the broadcast message is sent by j before CNCL has

arrived and is received by i after CNCL was sent. The worst case

gives 2(N-l) messages in the net per broadcast message, but in most

cases this situation will not occur, especially if the propagation

time of CNCL is small, so that the average is very close to (N-i)

copies per message, which is the minimal broadcast co.munication cost.

6) Delay: the routing algorithm tends to find paths with small total

weight (sum of link weights from nodes to SINK). The delay of broadcast

messages will be small if the weights are link delays and the traffic is

symmetric on links or if the weights of link (ij) contain a measure of

the delay on link (j,i).

I.

-b.

- 14 -

Appendix A

Here we prove that the CRB Protocol of Section 2.2 is indeed

complete and that the RRB Protocol of Section 2.3 is indeed complete and

finite. First we recall several properties of the routing protocol of

[2] indicated in Section 2.1 and introduce several definitions:

a) in each cycle a, the routing protocol requires each node i to send

exactly one MSG(a) to each neighbor

b) cycle a starts when SINK sends MSG(a) to all neighbors (<3> in the

algorithm for SINK) and ends when SINK receives MSG(a) from all

neighbors (line <4>).

c) a node i is said to be in cycle a while ai=a, i.e. from the time it

perf, .ns <3> with ai.- and until it performs <3> with ai4a+l.

d) just before node i performs <3>, holds a=ail, so that ai always

increases by 1.

e) whenever we need to indicate the value of a variable, say pi, at a

certain time t we shall write pi[t].

Lemma Al (Session Property)

Consider the CRB Protocol of Section 2.2. If a broadcast message B

is received at time t at node i from j and it is accepted, then B was

sent by j after receiving the last DCL message sent by i until time t.

Proof

Let T<t be the time B was sent by J. Since broadcast messages are

accepted only from fathers (see '9> of CRB) and sent only to sons (see <7>

and <10>), we have pi[t] - J and zj(i)[r1 - 1. Thus the last DCL message

sent by i before time t (at time to say) was indeed sent to j and we want to

show that it was received by J (at time T0 say) before time r,or in other

words i is the son of j at time T as a result of this last DCL and not of

some previous DCL's. This is exactly the session property. The timing

diagram is given in Fig. 1. Consider also the last CNCL sent by i before t
-!

- 15 -

to j and let tc, TCa be respectively the time it was sent, the time it was

received and the cycle number of i at time tc. Clearly tc < tD and by FIFO

we also have TC < TD . In order to prove the lenna we need to show that

TD < T. Observe now that z.(i) = 0 between TC and TD and since z.(i)[T] = 1,

time T cannot be between TC and TD . It is sufficient therefore to show that

TC < T. Observe that <4b> shows that CNCL is sent after receiving MSG(a)

from all neighbors, in particular j and before sending MSG() to j and there-

fore aj[TC] = a, where aj is the cycle number of node j. Suppose now that

TC > T. Then aj[T] c a and B was sent (and received, by FIFO) from j to i

before MSG(a+l), so that i could not have performed <4> of cycle a+l before t.

Since p i changes only in <4>, it follows that pi[t] = pi(tc+] # j which Is a

contradiction. This proves the session property of the Routing-Broadcast

Protocol of Section 2.2. Observe that the proof relies heavily on the Proper-

ties of the Routing Protocol of [2).

Lena A2

If broadcast message B is received at node i from j and is accepted,

then IC I0. (Recall that ICq denotes the value of the counter IC. just

after node i has accepted B).

Proof

Consider the notations of Lemma Al and of Fig. 1. From line <4b>

in the CRB algorithm follows that the DCL(a,IC) message carries the counter

number IC = ICi[tD]. Since pi - j on the interval (t., t], node i accepts

during this time broadcast messages only from j, and by the Session Property,

those are sent only after time T, at which j performs <6>, <7>. Now it is

easy to check (see <7>, <9,-<1l, for node j) that in both cases,

IC < ICj[TD-I and IC % ICJITD-] , node j will consecutively send to I

after tD the broadcast messages corresponding to counter numbers IC+l, IC+2,

etc. When they will be received and accepted at I, the counter ICi will be

increased respectively to IC+l, IC+2, etc.

- 16 -

Theorem Al

The CRB algorithm of Section 2.2 is indeed complete, namely

IC = ICIB holds for every node i and every broadcast message B.i SINK
Proof

If the above relation does not hold, let i and B be the node and

broadcast messabe for which it is violated for the first time throughout

the network, and let t be the time B was accepted at i. If B was received

from j, then lenna A2 Implies IC - I so that IC $ ICSINK. But B was

accepted at j before being accepted at i, violating the fact that the

statement of the Theorem held throughout the network until time t.

For future reference we need

Lemma A3

If DCL(Q,IC) arrives at node j, then Q~zj or aj- .

Proof

Consider the notations of Lemma Al and of Fig. 1. Then ai[tD] = a

and therefore MSG(+l) will be sent from i to j after the DCL message.

Consequently <4> of cycle (a+l) can be performed at j only after TD , hence

aj[tD] s a+l. On the other hand to is the time i performs <4> of cycle

and hence MSG(a) has been received at i from j before or at to, so that

dLj(TD] > a'

We next proceed to the proof that the RRB Protocol of Section 2.3 is

complete and finite.

Lemma A4

In the RRB Protocol, if a MSG(a', z-O arrives at i from J-pi,

(and by <2>, <3> is ignored), then MSG(a', z-1) will arrive at i in finite

time from j and then j will still be the father pi of I.

Proof

With the notations of Fig, I, where 8 is replaced by MSG(a', z-0),

holds T < TO (since z-O) and t > t D (since pt-j). Now

- 17 -

a [TO] >,[r] = a a ai[t]+lai[tD]+l a cg+l, where the second equality follows

from property d) at the beginning of the Appendix. From Lemma A3 follows that

Ij[TO) = a+l and hence j will send to i at time TD control message

MSG(a', z=l) according to line <6b> in RRB.

Definition

A control message MSG(a, z=l) is said to be "accepted" at node i

if it triggers performance of <3> in RRB at node i. Also, define the counter

number associated with an accepted message MSG(a, z=l) as ICi(MSG(a, z=l)) =

Lemma A5

With the above definitions, control messages with z=l propagate in

RRB as if they were regular broadcast messages.

Proof

Broadcast messages are accepted at i only if they arrive from pi and

are sent to sons, either when they are accepted or in response to DCL with

IC < ICI. Control messages MSG(a, z-l) are accepted only if they arrive from

pi and are sent to sons, either when they are accepted (<3> in RRB) or in

response to DCL with IC < ICi (<6b> in RRB). Moreover, MSG(a, z=l) is

accepted at i before all broadcast messages B with ICi (a, C.(a)), since

node i enters cycle & as a result of accepting MSG(a, z1l) from pi and broad-

cast messages with IC, as above are all accepted while i is in cycle a. Now,

MSG(a, z-l) is sent to any node before all such broadcast messages (see <3>

and c6b>), so that the order is preserved as well. Hence the statement of the

Lemma.

Corollary Al

The combination of broadcast messages and control messages with z-1

performs a jointly complete algorithm, i.e. all such messages are accepted

in the order released by the source node SINK, with no duplicates and no

messages missing.

-1

.. ' - S ' i ,.,-. ... " " -...

-. 18 -

Theorem A2

The RRB protocol is complete and finite.

Proof

From Lemma A4 and the fact that every routing cycle of the

algorithm of [2] propagates in finite time, follows that the propagation

of control messages with z=l is finite, namely every node enters every

cycle in finite time. By Corollary Al, all broadcast messages released by

SINK while SINK is in cycle a are accepted at each node while the node is

in cycle a, and since each node enters cycle (a+1) in finite time, all

such broadcast messages are accepted at each node in finite time.

- 19 -

References

1. Y.K. Dalal and R.M. Metcalfe, Reverse Path Forwarding of Broadcast

Packets, Communications ACM, Vol. 21, No. 12, pp. 1040-1048, Dec. 1978.

2. P.M. Merlin and A. Segall, A Failsafe Distributed Routing Protocol,

IEEE Trans. on Comm., Vol. COM-27, No. 9, pp. 1280-1287, Sept. 1979.

3. Y.K. Dalal, Broadcast Protocols in Packet Switched Computer Networks,

Ph.D. Thesis, Stanford Univ., April 1977, DSL Technical Report 128.

Pi ,j Pi=J
S._ node i

CNCL DCL(aIC) B

. node j
t L 10

z (i)=O z.(1)=1

Fig. 1. Timing Diagram for Lemma Al

iATE

01 LMED

